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Abstract
Using a realization of the q-exponential function as an infinite multiplicative
series of the ordinary exponential functions we obtain new nonlinear connection
formulae of the q-orthogonal polynomials such as q-Hermite, q-Laguerre and
q-Gegenbauer polynomials in terms of their respective classical analogues.

PACS numbers: 02.20.Uw, 02.30.Lt

1. Introduction

With the advent of quantum groups the q-orthogonal polynomials are objects of special interest
in both mathematics and physics. For instance, a q-deformed harmonic oscillator provides
[1] a group-theoretic setting for the q-Hermite and the q-Laguerre polynomials. Moreover,
the q-Hermite polynomials naturally arise [2] in the context of the eigenfunctions of the
Hamiltonian of a q-deformed harmonic oscillator. Similarly in the theory of the q-analogue
of the hydrogen atom [3] the q-Laguerre polynomials are expected to play an essential role.
Another example is provided by the q-Gegenbauer polynomials which are the building blocks
of the correlation functions of various deformed integrable models [4, 5]. In one way the
q-deformed systems may be physically viewed as perturbations of the corresponding
undeformed (q = 1) systems leading to interesting properties of the spectrum [3]. Also
in the context of the semiclassical (WKB) approximation it has been observed [6] that for
a real q the WKB equivalent potential of a q-deformed oscillator at slightly off-equilibrium
position resembles a classical sextic oscillator. In this scenario suitable nonlinear connection
formulae interrelating the q-orthogonal polynomials with their classical partners may be
useful in extracting the classical perturbative terms reproducing similar spectrum as that
of the q-deformed systems. Furthermore such connection formulae may establish direct
linkages between the correlation functions of the q-deformed integrable systems and their
classical analogues leading to an understanding of the deformations that preserve integrability.
Influenced by these observations here we provide a general framework for obtaining these
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nonlinear connection formulae, and, in particular, explicitly derive them for q-Hermite,
q-Laguerre and q-Gegenbauer polynomials in terms of their respective classical counterparts.

In the mathematical framework needed to describe the properties of these q-polynomials,
such as the recurrence relations, generating functions and orthogonality relations, Jackson’s
q-exponential plays a key role. Recently, Quesne [7] has expressed Jackson’s q-exponential
as a multiplicative series of the ordinary exponentials with known coefficients in closed
form. This result is the tool of our choice for investigating the nonlinear connection formulae
mentioned earlier.

Jackson actually introduced two related q-exponentials:

eq(z) =
∞∑

n=0

1

(q; q)n
zn, Eq(z) =

∞∑
n=0

qn(n−1)/2

(q; q)n
zn, (1.1)

where

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1 − aqk). (1.2)

The classical limits of the above q-exponentials read

lim
q−→1

eq((1 − q)z) = exp(z), lim
q−→1

Eq((1 − q)z) = exp(z). (1.3)

Heine’s q-binomial theorem provides [8] the following multiplicative series:

eq(z) = 1

(z; q)∞
, Eq(z) = (−z; q)∞, (1.4)

such that

eq(z)Eq(−z) = 1. (1.5)

In physics literature another form of q-exponential commonly occurs. This is given by

expq(z) =
∞∑

n=0

1

[n]q!
zn, (1.6)

where

[n]q = 1 − qn

1 − q
, [n]q! = [n]q[n − 1]q · · · [1]q, [0]q! = 1. (1.7)

Comparing the first equation in (1.1) and (1.6) it is evident that

expq(z) = eq((1 − q)z). (1.8)

Quesne [7] expressed the q-exponential (1.6) as a product series of the ordinary exponentials
as follows:

expq(z) = exp

(∑
k∈N

ck(q)zk

)
, ck(q) = (1 − q)k−1

k[k]q
. (1.9)

This expansion allows us to write

eq(z) = exp

(∑
k∈N

zk

k(1 − qk)

)
, (1.10)

and

Eq(z) = exp

(∑
k∈N

(−1)k+1zk

k(1 − qk)

)
. (1.11)
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These results are particularly suitable for applications in the theory of special functions.
Specifically, they may be readily employed to develop a general procedure for obtaining
connection formulae for various q-orthogonal polynomials. First, the generating function
of a suitable q-orthogonal polynomial may be expressed as an infinite product of generating
functions of the corresponding classical polynomial. This, in turn, may be utilized to develop a
Diaphontine partition equation. As successive terms in the said product series have increasing
exponents of the arguments, the partition equation has a finite number of solutions and each
q-orthogonal polynomial can be expressed in terms of its classical counterparts of equal or
lesser orders. In the following sections we illustrate this procedure in the cases of q-Hermite,
q-Laguerre and q-Gegenbauer polynomials.

2. q-Hermite polynomials

It has been observed [2] that the q-Hermite polynomials are components of the eigenfunctions
of the Hamiltonian of the q-deformed harmonic oscillator. These authors investigated the
recurrence relation, the generating function, the orthogonality relation and other properties
of the said polynomials. The generating function of the q-Hermite polynomials has been
expressed [2] in terms of the q-exponentials:

Gq(z; t) ≡ Eq−2(2(1 − q−2)zt)eq−4

(
−2(1 − q−4)t2

q(1 + q−2)

)
=

∞∑
n=0

qn/2

[n]q−2 !
Hn(z; q)tn. (2.1)

In the q → 1 limit, above function Gq(z; t) yields the well-known generating function of the
classical Hermite polynomials:

G(z; t) ≡ exp(2zt − t2) =
∞∑

n=0

1

n!
Hn(z)t

n. (2.2)

For later use in our expansion scheme the classical Hermite polynomials are listed below:

Hn(z) =
[n/2]∑
�=0

(−1)�
n!(2z)n−2�

�!(n − 2�)!
, (2.3)

where the symbol [n/2] means the largest integer smaller or equal to n/2. Following (1.10)
and (1.11) we recast the q-exponentials in (2.1) as

Eq−2(2(1 − q−2)zt) = exp

(∑
k∈N

(−1)k+1ck(q
−2)(2zt)k

)
,

eq−4

(
−2(1 − q−4)t2

q(1 + q−2)

)
= exp

(∑
k∈N

(−1)kck(q
−4)

(
2t2

q(1 + q−2)

)k
)

.

(2.4)

Introducing the following parameters

τk = (−1)(k+1)/2

(
2

q[2]q−2

)k/2 √
ck(q−4)tk,

ζk = (−1)(k+1)/2(2q[2]q−2)k/2 ck(q
−2)

2
√

ck(q−4)
zk,

(2.5)
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Table 1. Contributions to H5(z; q).

Solutions of (2.8) for n = 5 Contributions to H5(z; q)

n1 = 5 − [5]
q−2 !

5!

(
2

q2[2]
q−2

)5/2
H5(ζ1)

n1 = 3, n2 = 1
√−1

[5]
q−2 !

3!

(
2

q2[2]
q−2

)5/2√
c2(q−4)H3(ζ1)H1(ζ2)

n1 = 2, n3 = 1
[5]

q−2 !

2!

(
2

q2[2]
q−2

)5/2√
c3(q−4)H2(ζ1)H1(ζ3)

n1 = 1, n4 = 1 −√−1[5]q−2 !
(

2
q2[2]

q−2

)5/2√
c4(q−4)H1(ζ1)H1(ζ4)

n2 = 1, n3 = 1 −√−1[5]q−2 !
(

2
q2[2]

q−2

)5/2√
c2(q−4)c3(q−4))H1(ζ2)H1(ζ3)

n1 = 1, n2 = 2
[5]

q−2 !

2!

(
2

q2[2]
q−2

)5/2
c2(q

−4)H1(ζ1)H2(ζ2)

n5 = 1 −[5]q−2 !
(

2
q2[2]

q−2

)5/2√
c5(q−4)H1(ζ5)

the generating function (2.1) may be expressed as a multiplicative series of the classical
generating functions:

Gq(z; t) =
∏
k∈N

G(ζk; τk). (2.6)

Employing expansions (2.1) and (2.2) of the above generating functions and comparing
coefficients of equal power of t on both sides, we obtain a connection formula for the
q-Hermite polynomials in terms of its classical partners of lower dimensions:

qn/2

[n]q−2 !
Hn(z; q) =

(
2

q[2]q−2

)n/2 ∞∑
n1,n2,···=0

(−1)(n+
∑

k∈N
nk)/2

∏
k∈N

[
(ck(q

−4))nk/2 Hnk
(ζk)

nk!

]
δ∑

k∈N
knk,n.

(2.7)

The solutions of Diophantine partition relation∑
k∈N

knk = n (2.8)

select the product structure of the classical Hermite polynomials appearing on the rhs of (2.7).
As an illustration we here use the connection formula (2.7) for reconstructing the q-Hermite
polynomial H5(z; q). The solution of the partition equation (2.8) and the corresponding
contributions to the connection formula (2.7) are listed in table 1. Combining the entries of
the second column we may easily reproduce the well-known [2] result for H5(z; q):

H5(z; q) = 32q−45/2z5 − 16q−19/2[2]q−4 [5]q−2z3 + 8q−9/2[3]q−2 [5]q−2z. (2.9)

3. q-Laguerre polynomials

The theory of the q-Laguerre polynomials has been studied [1, 9] extensively. They appear [1]
in the representation theory of the enveloping algebra of the q-deformed Heisenberg algebra.
These authors observed [1] that the generating function of q-Laguerre polynomials may be
cast in the form

G(n)
q (z; t) ≡ Eq(−(1 − q)zt)

(
−q

t
; q

)
n
tn =

∑
k

q(n−k)(n−k+1)/2L
(n−k)
k (z; q)tk, (3.1)
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which may be viewed as the q-analogue of the generating function [10] of the classical Laguerre
polynomials:

G(n)(z; t) ≡ exp(−zt)(1 + t)n =
∑

k

L
(n−k)
k (z)tk. (3.2)

For the purpose of later use we list here the classical Laguerre polynomials as

L
(n−k)
k (z) =

k∑
�=0

(−1)�
(

n

k − �

)
z�

�!
. (3.3)

The product structure (1.11) may now be utilized to express the q-Laguerre generating
function (3.1) as a multiplicative series of the classical Laguerre generating function (3.2):

G(n)
q (z; t) =

∏
k∈N

[G(nk)(ck(q)zk; t k)(1 + t k)−nk ]
(
−q

t
; q

)
n
tn, (3.4)

where any integer set {nk} may be used in the rhs. Each set of auxiliary integer parameters
{nk} provides an expansion scheme for the q-Laguerre polynomials. The deformed q-Laguerre
polynomials, when reconstructed via our expansion scheme involving the classical Laguerre
polynomials, must not depend on the intermediate auxiliary integer parameters {nk}. As
observed below, precisely this happens. The expansion scheme (3.4) forms the key ingredient
of our method. To explicitly obtain the connection formula for the q-Laguerre polynomials
we proceed by expressing the q-binomial theorem [8] as(

−q

t
; q

)
n
tn =

n∑
�=0

q(n−�)(n−�+1)/2

[
n

�

]
q

t�, (3.5)

where
[
n

�

]
q

= [n]q !
[�]q ![n−�]q ! . Using Pochhammer symbol

(α)� =
�−1∏
j=0

(α + j), (α)0 = 1, (3.6)

we rewrite

(1 + t)−n =
∞∑

�=0

(−1)�
(n)�

�!
t�. (3.7)

Systematic use of results (3.2), (3.5) and (3.7) on the rhs of the expansion scheme (3.4) now
yields the relation

G(n)
q (z; t) =

n∑
�=0

∑
{kj }

∑
{�j }

∏
j∈N

(
(−1)�j

(nj )�j

�j !
L

(nj −kj )

kj
(cj (q)zj )tj (kj +�j )

)
q(n−�)(n−�+1)/2

[
n

�

]
q

t�.

(3.8)

Using the second equality in (3.1) and comparing the coefficients of tk on both sides of (3.8),
we obtain the promised nonlinear connection formula:

q(n−k)(n−k+1)/2L
(n−k)
k (z; q) =

n∑
�=0

∑
{kj }

∑
{�j }

∏
j∈N

(
(−1)�j

(nj )�j

�j !
L

(nj −kj )

kj
(cj (q)zj )

)

× q(n−�)(n−�+1)/2

[
n

�

]
q

δ∑
j j (kj +�j )+�,k. (3.9)
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Table 2. Contributions to L
(0)
3 (z; q).

Solutions of (3.10) Contributions to L
(0)
3 (z; q)

k1 = 3 q6L
(n1−3)
3 (z)

�1 = 3 −q6 (n1)3
3!

� = 3 1

k3 = 1 q6L
(n3−1)

1 (c3(q)z3)

�3 = 1 −q6n3

k1 = 1, k2 = 1 q6L
(n1−1)
1 (z)L

(n2−1)
1 (c2(q)z2)

�1 = 1, �2 = 1 q6n1n2

k1 = 2, �1 = 1 −q6n1L
(n1−2)
2 (z)

k1 = 1, �1 = 2 q6 (n1)2
2 L

(n1−1)
1 (z)

k1 = 2, � = 1 q3[3]qL
(n1−2)
2 (z)

k1 = 1, � = 2 q[3]qL
(n1−1)
1 (z)

� = 1, �1 = 2 q3[3]q
(n1)2

2

� = 2, �1 = 1 −q[3]qn1

k2 = 1, �1 = 1 −q6n1L
(n2−1)
1 (c2(q)z2)

k2 = 1, � = 1 q3[3]qL
(n2−1)
1 (c2(q)z2)

� = 1, �2 = 1 −q3[3]qn2

k1 = 1, �2 = 1 −q6n2L
(n1−1)
1 (z)

k1 = 1, � = 1, �1 = 1 −q3[3]qn1L
(n1−1)
1 (z)

The solutions of the Diophantine partition relation∑
j∈N

j (kj + �j ) + � = k (3.10)

determine the set of classical Laguerre polynomials contributing to the expansion of a particular
q-Laguerre polynomial. In continuation of the discussion following (3.4) we note that the lhs
of (3.9) is independent of the set {nj }, and, consequently, each set of allowed {nj } provides
an expansion of the q-Laguerre polynomial L

(n−k)
k (z; q). This is a generic feature of our

procedure. Equations (3.9) and (3.10) form the main results of this section. To illustrate
our process with an example we here enumerate the contributing terms for n = 3, k = 3.
The corresponding solutions of the partition relation (3.10) and their respective contributions
to L

(0)
3 (z; q) are listed in table 2. The entries on the first column refer to the non-zero

elements in the solutions of the partition equation (3.10) for k = 3. Using the classical
Laguerre polynomials given in (3.3), we may now directly recover the polynomial L

(0)
3 (z; q)

by summing the entries on the second column of table 2. As noted earlier, the dependences on
the auxiliary integer parameters n1, n2, n3 in the contributions to L

(0)
3 (z; q), when summed,

disappear. Summing the contributions displayed on the second column in table 2 we obtain

L
(0)
3 (z; q) = 1 − q

[
3
1

]
q

z + q4 1

[2]q!

[
3
2

]
q

z2 − q9 1

[3]q!
z3, (3.11)

which, of course, agrees with the well-known [1, 9] result. This validates our expansion
scheme of the q-Laguerre polynomials in terms of the classical Laguerre polynomials.
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4. q-Gegenbauer polynomials

Classical Gegenbauer polynomials and their generalizations appear in many areas of theoretical
physics, such as the correlation functions for the Kniznik–Zamolodchikov (KZ) [11] equation
for the ŝl2 algebra and the wavefunctions of the integrable systems [12] generalized from
the Calogero–Sutherland [13, 14] model. Deformed q-Gegenbauer polynomials have been
introduced by Askey and Ismail [15]. Naturally, these deformed polynomials are of interest in
studying the q-KZ equation for the Uq(ŝl2) algebra [4] and also the deformations of integrable
models [5]. We think our method of expressing q-Gegenbauer polynomials as nonlinear
superpositions of classical Gegenbauer polynomials may be of use in these studies.

The generating function [15] of the q-Gegenbauer polynomials read

G(λ)
q (cos θ, t) ≡ (qλ exp(iθ)t; q)∞

(exp(iθ)t; q)∞

(qλ exp(−iθ)t; q)∞
(exp(−iθ)t; q)∞

= Eq(−qλ exp(iθ)t)

Eq(− exp(iθ)t)

Eq(−qλ exp(−iθ)t)

Eq(−exp(−iθ)t)

=
∞∑

n=0

C(λ)
n (cos θ; q)tn. (4.1)

The q-Gegenbauer polynomials are explicitly given by [15]

C(λ)
n (cos θ; q) =

n∑
�=0

(qλ; q)�(q
λ; q)n−�

(q; q)�(q; q)n−�

cos(n − 2�)θ. (4.2)

In contrast to the case of Hermite and Laguerre polynomials discussed earlier the generating
function for the classical Gegenbauer polynomials is not usually expressed in terms of ordinary
exponentials:

G(λ)(cos θ, t) ≡ (1 − 2 cos θt + t2)−λ =
∞∑

n=0

C(λ)
n (cos θ)tn. (4.3)

For subsequent applications we here list the classical Gegenbauer polynomials as follows:

C(λ)
n (cos θ) =

n∑
�=0

(λ)�(λ)n−�

�!(n − �)!
cos(n − 2�)θ. (4.4)

To establish a connection formula between the q-deformed Gegenbauer polynomials and their
classical analogues we recast the classical generating function (4.3) in an alternate form:

G(λ)(cos θ, t) = exp

(
2λ

∑
k∈N

cos(kθ)
tk

k

)
. (4.5)

In a parallel construction we use the expansion scheme (1.11) to express the deformed
generating function G(λ)

q (cos θ, t) given in (4.1) as an infinite product series of the ordinary
exponentials:

G(λ)
q (cos θ, t) = exp

(
2
∑
k∈N

[λ]qk cos(kθ)
tk

k

)
. (4.6)

The close kinship between the product serieses (4.5) and (4.6) now provides an interrelation
between these two generating functions:

G(λ)
q (cos θ, t) = exp

(
1 − qλD

1 − qD ln G(1)(cos θ, t)

)
, (4.7)
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where D ≡ t∂t . For the purpose of simplicity we, in the above expression, have used the
classical generating function for the λ = 1 case, namely G(1)(cos θ, t). In this case the
Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.

Starting from the mapping (4.7) of the deformed generating function on the classical
generating function it is possible to develop via the route adopted in sections 3 and 2 a general
nonlinear connection formula between an arbitrary q-Gegenbauer polynomial and its classical
partners. But since the general formula is notationally quite cumbersome, we subsequently
express the first few q-Gegenbauer polynomials in terms of their classical analogues. But
prior to that it is worthwhile to recast (4.7) in another form particularly suitable for deriving a
set of sum rules:

ln G(λ)
q (cos θ, t) = [λ]qD ln G(1)(cos θ, t). (4.8)

Expanding both sides of (4.8) in the variable t and equating its identical powers, we obtain the
general sum rule:∑
n∈N

(−1)n+1

n

∑
�1,...,�n∈N

C
(λ)
�1

(z; q) · · · C(λ)
�n

(z; q)δ�1+···+�n,N

= [λ]qN

∑
n∈N

(−1)n+1

n

∑
�1,...,�n∈N

C�1(z) · · · C�n
(z)δ�1+···+�n,N . (4.9)

As mentioned in the context of (4.7), we here and henceforth consider the classical Gegenbauer
polynomials C(λ)

n (z) for the λ = 1 case and suppress the superscript. For an explicit value
of N ∈ N the sum rule immediately follows from (4.9). To illustrate the first few cases we
introduce, via (4.9), a set of variables:

I(λ)
1 (z; q) = C

(λ)
1 (z; q) I(λ)

2 (z; q) = C
(λ)
2 (z; q) − 1

2

(
C

(λ)
1 (z; q)

)2

I(λ)
3 (z; q) = C

(λ)
3 (z; q) − C

(λ)
1 (z; q)C

(λ)
2 (z; q) − 1

3

(
C

(λ)
1 (z; q)

)3

I(λ)
4 (z; q) = C

(λ)
4 (z; q) − C

(λ)
1 (z; q)C

(λ)
3 (z; q) − 1

2

(
C

(λ)
2 (z; q)

)2

+
(
C

(λ)
1 (z; q)

)2
C

(λ)
2 (z; q) − 1

4

(
C

(λ)
1 (z; q)

)4

I(λ)

5 (z; q) = C
(λ)

5 (z; q)−C
(λ)
1 (z; q)C

(λ)
4 (z; q)−C

(λ)
2 (z; q)C

(λ)
3 (z; q)+

(
C

(λ)
1 (z; q)

)2
C

(λ)
3 (z; q)

+ C
(λ)
1 (z; q)

(
C

(λ)
2 (z; q)

)2 − (
C

(λ)
1 (z; q)

)3
C

(λ)
2 (z; q) + 1

5

(
C

(λ)
1 (z; q)

)5
. (4.10)

The sum rules given in (4.9) may then be succinctly stated as

I(λ)
� (z; q) = [λ]q�

(
I(λ=1)

� (z; q)
)
q→1 ∀� ∈ N. (4.11)

We also enumerate a few explicit examples of our nonlinear connection formula relating
q-Gegenbauer polynomials and their classical counterparts:

C
(λ)
0 (z; q) = C0(z) = 1, C

(λ)
1 (z; q) = [λ]qC1(z),

C
(λ)
2 (z; q) = [λ]q2C2(z) − 1

2

(
[λ]q2 − [λ]2

q

)
C2

1(z),

C
(λ)
3 (z; q) = [λ]q3C3(z) − ([λ]q3 − [λ]q[λ]q2)C1(z)C2(z)

+ 1
6

(
2[λ]q3 − 3[λ]q[λ]q2 + [λ]3

q

)
C3

1(z),

C
(λ)
4 (z; q) = [λ]q4C4(z) − 1

2

(
[λ]q4 − [λ]2

q2

)
C2

2(z) − ([λ]q4 − [λ]q[λ]q3)C1(z)C3(z)

+ 1
2

(
2[λ]q4 − 2[λ]q[λ]q3 − [λ]2

q2 + [λ]2
q[λ]q2

)
C2

1(z)C2(z)

− 1
24

(
6[λ]q4 − 8[λ]q[λ]q3 − 3[λ]2

q2 + 6[λ]2
q[λ]q2 − [λ]4

q

)
C4

1(z),
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C
(λ)

5 (z; q) = [λ]q5C5(z) − ([λ]q5 − [λ]q[λ]q4)C1(z)C4(z) − ([λ]q5 − [λ]q2 [λ]q3)C2(z)C3(z)

+ 1
2

(
2[λ]q5 − 2[λ]q[λ]q4 − [λ]q2 [λ]q3 + [λ]2

q[λ]q3

)
C2

1(z)C3(z)

+ 1
2

(
2[λ]q5 − [λ]q[λ]q4 − 2[λ]q2 [λ]q3 + [λ]q[λ]2

q2

)
C1(z)C

2
2(z)

− 1
6

(
6[λ]q5 − 6[λ]q[λ]q4 − 5[λ]q2 [λ]q3 + 3[λ]2

q[λ]q3

+ 3[λ]q[λ]2
q2 − [λ]3

q[λ]q2

)
C3

1(z)C2(z) + 1
120

(
24[λ]q5 − 30[λ]q[λ]q4

− 20[λ]q2 [λ]q3 + 20[λ]2
q[λ]q3 + 15[λ]q[λ]2

q2 − 10[λ]3
q[λ]q2 + [λ]5

q

)
C5

1(z). (4.12)

Explicit use of the above connection formulae immediately proves the validity of the sum
rules presented in (4.11). It is interesting to note that modulo a multiplicative factor, the
combinations I(λ)

� (z; q) preserve their ‘form’ when the deformed polynomials are recast in
terms of their classical partners via our connection formulae.

5. Discussions

Using a realization of the q-exponential function as an infinite multiplicative series of the
ordinary exponentials we have obtained a new set of nonlinear connection formulae for
the q-orthogonal polynomials in terms of their classical partners. The scheme has been
illustrated for q-Hermite, q-Laguerre and q-Gegenbauer polynomials. One significance of our
result is that these connection formulae may be useful in understanding the spectrum and the
matrix elements of the q-deformed systems in terms of their classical analogues and explicitly
calculable perturbations thereof. This is expected to provide better physical comprehension
of the models such as q-deformed rotator [17, 18], which found wide applications in nuclear
physics.

We conclude our work by mentioning some other possible applications of our procedure.
The connection formulae described here may also be developed for the little q-Jacobi
polynomials. The matrix elements of the finite-dimensional unitary co-representations of the
quantum group SUq(2) and the supergroup OSpq(1/2) may be obtained [16, 19] using the little
q-Jacobi polynomials. Our formulation allows expressing the said matrix elements via their
classical analogues. It may, for instance, be useful in constructing so far unknown generating
function [20] of the co-representation matrices of the quantum supergroup OSpq(1/2). We
will address this issue elsewhere.
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